Advanced Search

Please click here to take a brief survey

WC Retro: The Rise of Bright Green Computers

powermate_eco.jpg By Jeremy Faludi, posted on April 25, 2006.

We love our computers for all the ways they make our lives (and the world) better -- the wealth of knowledge (and democratizing force) of the Internet, the instantaneous communication, the sophisticated tools that help us work and create and share. But do our computers love us back?

The modern world's greatest tool is among our most disposable and resource-heavy. Performance-wise, computer design has progressed staggeringly well and astonishingly fast. But looking at it from a green perspective, the work has barely begun. When our laptop dies and we toss it, it either rots in a landfill, or children in the developing world end up wrestling its components apart by hand, melting toxic bits to recover traces of heavy metals. Did someone forget to design for them? And of the $250 billion per year spent on powering computers worldwide, only about 15% of that power was spent computing--the rest was wasted idling. Did we really get what we paid for?

We've written about various aspects of green computers before, but here's an attempt to give a whole-picture view of what the bright green computer of tomorrow will be like: efficiency, manufacturing & materials, recyclability, service model, self-powering, and other trends.

Power: Watts vs. Flops

It has been said that it takes a pound of coal to create, package, store, and move every 2 megabytes of data. This is wrong--Lawrence Berkeley Labs checked the numbers and found it was more like one pound of coal for every 10 or 20 megabytes--but even so, that's a lot of energy. Even with energy prices as cheap as they are now, Google projects it will soon cost more to power a computer for four years than it does to buy a new one. Faster processors historically use more power, and you may recall some generations of Intel chips being called "toasters" for the enormous heat they generated. But that heat's not necessary, it's inefficiency. Inefficient CPU's are a double hit because they both use too much power themselves and their waste heat increases air conditioning needs, especially in server farms--between the computers and the HVAC, data centers use almost ten times the energy per square foot as office space. The waste heat also causes reliability problems, as CPU's crash much more often at higher temperatures. Besides CPU's, inefficiencies also crop up in power supplies, monitors (though LCD's are an order of magnitude better than the CRT's we used to use), and some peripherals. Many people have been working for years to slice this inefficiency out of machines, particularly laptops and other mobile devices whose battery life depends on wise power use.

Transmeta was the pioneer in power-efficient CPU's, with a brilliant design that provided 30% - 170% improvement in performance-per-watt from Intel chips. The market didn't really appreciate Transmeta, but they're still plugging away, and will hopefully be more successful over time. Even more impressive, P. A. Semi is a new chipmaker who claims their CPUs have ten times the performance-per-watt of other computers. The biggest player involved is Sun Microsystems, which has bet a lot on efficient CPUs. They claim their "Niagra" processor gives the best performance-per-watt of any CPU on the market, and said in a 2005 press release that if just half of their entry-level servers from the last three years had been Niagras, the impact would be equivalent to pulling a million SUV's off the road. Sun's CEO Scott McNealy said about their Eco-Responsibility Initiative, “we’re here to make money. Understand that. But we think we can do that in a way that pays off not only for our shareholders but for everybody on the planet.”

CPU's are not the only sources of inefficiency in a computer. Power supplies are notoriously bad, generally as little as 47% efficient. And since everything in your computer runs off the power supply, nothing can be efficient without a good one. As we recently mentioned, "80 Plus" certified power supplies are helping fix this by running at 80% efficiency or better. Software also helps. Many computers are only in use 10-20% of the time; laptops use power-management software to sleep or hibernate when not in use, and although desktops lag behind, almost all now have some kind of power management software.

On the far horizon, reversible computing (which also includes quantum computing) promises to reduce power consumption by a factor of several thousand, but such systems are still very much in the lab. It will probably be a decade or two before anything like that makes it to the marketplace.

Computers' power needs will decrease over time one way or another, and at the same time, our ability to generate power renewably on-site will increase. I think within the next ten years we will hit the crossover point where computers can generate all their own power. Solar panels can already cost as little as a dollar a watt, and can generate 5 - 10 watts per square foot. Laptops currently use between 15 and 45 watts. If you assume photovoltaic efficiency increases 50% and computer efficiency doubles (modest goals for 10 years), every laptop could power itself with a PV panel on its top. Alternatively, an average person can generate 75 watts continuously pedaling a bike, or 5 watts turning a hand-crank; computer efficiency gains of 10x could make this a viable method. This is theoretically already designed into the One Laptop Per Child project, and has been tried elsewhere as well.

Sugar and Spice and All Things Nice--well, actually not.

Electronics make up 70 percent of all hazardous waste. Manufacturing computers produces about two pounds of waste for each pound of computer, and between a quarter and a third of this is hazardous waste (the only numbers I have are from ten years ago; can someone provide a link to recent studies?) This includes things like lead in solder, Selenium in circuit boards and power supplies, mercury in LCD backlights, polybrominated flame retardants and antimony trioxide flame retardant in plastics, cadmium in circuit boards and semiconductors, and more. In addition, chip manufacturing uses some of the deadliest gases known to man (such as arsine, silane, chlorine, and phosgene) and several greenhouse gases (like nitrous oxide and carbon dioxide). Not to mention the few thousand gallons of water and over 6000 megajoules of energy a computer requires to fabricate. This is more than the average American's energy use for a month and a half, and Americans use a lot of energy. (Again, if someone has recent numbers on water & energy, please send.) But the computer of the future will be cleaner and greener.

NEC’s 2002 PowerMate Eco was the first computer to use lead-free solder, a fully recyclable plastic case, monitors without harmful gases, and no toxic flame retardants. (It also used a very efficient CPU, the Transmeta Crusoe.) Little has happened since then, but Dell's OptiPlex GX520 and GX620 desktops are nearly lead-free, and by this summer all computers entering the EU are required to be also. A smaller Oregon company, Computer Technology Link (CTL), sells lead-free PC's that also reduce power use by 15-25%, CTL will even recycle your old computer for free, as well as the computer you buy from them when you're done with it. In 2004 HP prototyped a printer with a corn-based plastic case that could biodegrade. The jury’s still out about whether biodegradable cases will actually go to the compost pile rather than the landfill, but it's worth a shot, and last year NEC created a mobile phone with a compostable case, made from a composite of corn plastic and natural fibers.

Circuit boards could be created with a fraction of the waste produced now; they no longer have to be acid-etched copper on fiberglass, we have new technologies such as inkjet-printed conductive polymers which cause only a tiny fraction of the waste. The technology is still in the lab, but on a production scale it should be both greener and cheaper than etching. Even with existing technology there are many toxins which can be eliminated from circuitboard production, and the European Union's pending RoHS toxics-reduction legislation will begin to force companies to build better boards.

Chip fabrication could be radically cleaned up. It's a hard problem--manufacturers push the edges of materials science to get all those tiny features on the chips, so processes are not well-enough understood to easily swap toxic reagents for nontoxic ones--but it is a solvable problem. The lack of progress is mostly due to lack of priority in R&D--consumers don't care about production impacts, they care about speed. Some fabs are working on making their buildings and support systems better, though. In 2004 Texas Instruments worked with Rocky Mountain Institute to design a greener fab in Texas that saved so much money in water, power, and construction costs that it was cheaper than building overseas. That success simply involved better facility design; imagine if we redesigned the whole process.

In comparison to reformulating the computer's chips, reformulating the outside shell is a snap. The shining, coated plastics many computers have now are cobbled from a stew of materials that are not only unrecyclable, but also somewhat expensive. As mentioned above, NEC and HP have made forays into greener case design using exotic bio-plastics. Even simpler methods work as well--sleek aluminum cases are more robust and far more recyclable than plastic ones.

Giving Your Computer Nine Lives

For years, computer manufacturers have blithely packed hazardous substances into their gadgets, then let the whole pile of materials speedily obsolesce; but legislation and consumer activism is changing that. Their new laws requiring manufacturers to take back their own products when customers discard them is a simple but powerful force for changing the production process. Faced with disassembling parts and cycling them back into the fabrication process, companies are making more careful decisions about how those parts are assembled in the first place. Faced with disposal of their own toxic waste, companies are more motivated to eliminate the ingredients from production.

Companies in Europe who've been legally obliged to take back their products—though they initially balked at the idea—have found that it actually helps their bottom lines, increasing efficiency in labor and materials, and thus saving money. A Panasonic television from 1984 had 39 plastic parts made from 13 different plastics, and took 140 seconds to disassemble. Their 2000-model television contained a mere eight plastic parts made from two types of plastic, and took 78 seconds to take apart (with a corresponding advantage in the time to assemble). Panasonic has a great illustration of this on their website.

Dell recovered 36 million kilos of their products last year for reuse or recycling, and they plan to triple their product recovery by 2009. Their takebacks were not brought on by legislation, but by consumer activism--the Silicon Valley Toxics Coalition's "Toxic Dude" campaign, which had college students pressuring Dell to take back old computers, worked so well that Dell now gets it, and has exceeded its own recycling goals. Hewlett-Packard is another leader in recycling old machines--both their own and other companies'. They reuse what they can, then downcycle and dispose of the rest. It's far from being a perfect cradle-to-cradle system, but when all companies have to take back their products, much more design effort will go into creating self-perpetuating cycles of components and materials.

The best way to recycle a computer, however, is to keep it and upgrade it. After all, what do you really need a new computer for? A faster CPU, more memory, and more disk space. All these can be bought individually and replaced, in a well-designed machine. Most brand-name manufacturers are laggards here, making little effort to allow upgradeability of the CPU, though RAM and drives are easy to add. The vanguards of reusing computers are small service shops and resellers, making what are called "white box" systems cobbled together out of generic components, or souped-up older PCs. A few--like Berkeley, California’s Immaculate Computers--even make an effort to make their white boxes green by using lead-free solder. White-box systems are by their nature easy to upgrade or reconfigure, which also means they are easy to disassemble and recycle when you can't upgrade them anymore.

Service: Bits, Not Atoms

Have you ever watched the CPU usage of your machine? If so, you've noticed that it's twiddling its thumbs at just a few percent almost all the time, and only cranks up to full usage for a couple minutes here and there when you're using some fancy Photoshop filter or playing a game. Why have that idle horsepower at all? Because we want it to be there when we need it. Some efficient CPU's are starting to use power-management within them to shut down unused areas without the user noticing. But the ultimate way to have even more horsepower, and only pay for the time you're putting it to use, is to use someone else's machine. A "thin-client" or "dumb terminal" system is a service that connects you to a big industrial-strength computer somewhere else. Basically all you need is a screen, a keyboard, and a fast net connection; the computer’s brains and disk storage are kept on the server. Sun Microsystems is trying to push the world towards systems like this; they say existing thin-client systems use a tenth of the power and reduce raw material usage by a factor of 150. And that's even using new machines. Server farms can be just as powerful using a large number of older, slower processors as they can be using a small number of fast new processors; while each individual CPU might be too slow for you to want in your own machine, a rack of a hundred reclaimed from the trash bin could be faster than the best machine you could afford. This will help green computing by allowing old hardware to be useful for much longer--easily triple, possibly five times as long as it's currently useful. Sun points out that their thin-client system also allow people to work from home, which reduces the need to build offices and commute; these gains could have as much or more environmental impact as the improved computers. There's financial incentive, too: in addition to the green benefits, Sun says using thin-client systems in their own company saves them $2.8 million per year in energy, $65 million per year in real estate, and $21.2 million in other costs.

Sun's model involves centralized server farms running proprietary hardware and software, but there’s no reason it couldn't be done running open-source software on millions of generic machines scattered in living rooms across the world. With strong encryption, redundancy, and reliable connections, it doesn't matter if your data is located in your living room or scattered in stranger's homes in Bangalore and Berlin. The Seti@Home project has already proven the potential for large numbers of ordinary (even obsolete) net-connected computers in people's living rooms, using only spare CPU cycles, to become a powerful supercomputer.

The Bright Green Computer

All this is just the beginning. So far, consumers haven't cared about ecological impact when buying computers, they've cared only about speed and price. But as Moore's Law marches on and computers commoditize, consumers will become pickier about being green. (This means you!) Tomorrow's bright green computers will be different from today's in many ways. So far it’s rare to see a product that pulls on more than one solution, but the industry is starting to move forward--sometimes of its own accord, sometimes dragged kicking and screaming by regulations and consumer activism. Devices use less and less power while renewable energy gets more and more portable and effective. New green materials are developed every year, and many toxic ones are already being replaced by them. The greenest computer will not miraculously fall from the sky one day, it’ll be the product of years of improvements to this and that along the way. Designers can now make many small changes converge into a full rethinking of the industry, into directions as yet unknown. And when they do, we will have on our desk a machine that not only connects us to the world through information technology, but to a cycle of manufacturing that doesn't hurt us or future generations; to companies that consider both the people who make their computers and those who take them apart; and all in a product that is lighter, sleeker and more elegant than any we've yet seen.

Bookmark and Share



MESSAGE (optional):

Search Worldchanging

Worldchanging Newsletter Get good news for a change —
Click here to sign up!


Website Design by Eben Design | Logo Design by Egg Hosting | Hosted by Amazon AWS | Problems with the site? Send email to tech /at/
Architecture for Humanity - all rights reserved except where otherwise indicated.

Find_us_on_facebook_badge.gif twitter-logo.jpg